|
@@ -0,0 +1,135 @@
|
|
|
+import numpy as np
|
|
|
+from nn import NeuralNetwork
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+nn = NeuralNetwork(input_layer_size=7, hidden_layer_size=16, output_layer_size=10)
|
|
|
+nn.load('test.npz')
|
|
|
+
|
|
|
+
|
|
|
+test_data = [0.0, 0.0, 0.98, 0.0, 0.0, 0.99, 0.0]
|
|
|
+output = nn.get(test_data)
|
|
|
+print ("Test: 1")
|
|
|
+print (output)
|
|
|
+index = np.argmax(output)
|
|
|
+predict = np.argmax(output)+1
|
|
|
+confidence = round(output[0][index][0] * 100, 2)
|
|
|
+print (f'Predict: {predict}; Confidence: {confidence}%\r\n')
|
|
|
+
|
|
|
+test_data = [0.89, 0.0, 0.92, 0.97, 0.87, 0.0, 0.87]
|
|
|
+output = nn.get(test_data)
|
|
|
+print ("Test: 2")
|
|
|
+print (output)
|
|
|
+index = np.argmax(output)
|
|
|
+predict = np.argmax(output)+1
|
|
|
+confidence = round(output[0][index][0] * 100, 2)
|
|
|
+print (f'Predict: {predict}; Confidence: {confidence}%\r\n')
|
|
|
+
|
|
|
+
|
|
|
+test_data = [1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0]
|
|
|
+output = nn.get(test_data)
|
|
|
+print ("Test: 3")
|
|
|
+print (output)
|
|
|
+index = np.argmax(output)
|
|
|
+predict = np.argmax(output)+1
|
|
|
+confidence = round(output[0][index][0] * 100, 2)
|
|
|
+print (f'Predict: {predict}; Confidence: {confidence}%\r\n')
|
|
|
+
|
|
|
+
|
|
|
+test_data = [0.08, 0.97, 0.98, 0.97, 0.0, 0.89, 0.12]
|
|
|
+output = nn.get(test_data)
|
|
|
+print ("Test: 4")
|
|
|
+print (output)
|
|
|
+index = np.argmax(output)
|
|
|
+predict = np.argmax(output)+1
|
|
|
+confidence = round(output[0][index][0] * 100, 2)
|
|
|
+print (f'Predict: {predict}; Confidence: {confidence}%\r\n')
|
|
|
+
|
|
|
+
|
|
|
+test_data = [0.82, 0.97, 0.09, 0.97, 0.0, 0.89, 0.92]
|
|
|
+output = nn.get(test_data)
|
|
|
+print ("Test: 5")
|
|
|
+print (output)
|
|
|
+index = np.argmax(output)
|
|
|
+predict = np.argmax(output)+1
|
|
|
+confidence = round(output[0][index][0] * 100, 2)
|
|
|
+print (f'Predict: {predict}; Confidence: {confidence}%\r\n')
|
|
|
+
|
|
|
+
|
|
|
+test_data = [0.82, 0.97, 0.09, 0.97, 0.89, 0.89, 0.92]
|
|
|
+output = nn.get(test_data)
|
|
|
+print ("Test: 6")
|
|
|
+print (output)
|
|
|
+index = np.argmax(output)
|
|
|
+predict = np.argmax(output)+1
|
|
|
+confidence = round(output[0][index][0] * 100, 2)
|
|
|
+print (f'Predict: {predict}; Confidence: {confidence}%\r\n')
|
|
|
+
|
|
|
+test_data = [0.82, 0.09, 0.92, 0.09, 0.08, 0.91, 0.07]
|
|
|
+output = nn.get(test_data)
|
|
|
+print ("Test: 7")
|
|
|
+print (output)
|
|
|
+index = np.argmax(output)
|
|
|
+predict = np.argmax(output)+1
|
|
|
+confidence = round(output[0][index][0] * 100, 2)
|
|
|
+print (f'Predict: {predict}; Confidence: {confidence}%\r\n')
|
|
|
+
|
|
|
+
|
|
|
+test_data = [0.82, 0.97, 0.91, 0.97, 0.89, 0.89, 0.92]
|
|
|
+output = nn.get(test_data)
|
|
|
+print ("Test: 8")
|
|
|
+print (output)
|
|
|
+index = np.argmax(output)
|
|
|
+predict = np.argmax(output)+1
|
|
|
+confidence = round(output[0][index][0] * 100, 2)
|
|
|
+print (f'Predict: {predict}; Confidence: {confidence}%\r\n')
|
|
|
+
|
|
|
+
|
|
|
+test_data = [0.82, 0.97, 0.91, 0.97, 0.08, 0.89, 0.92]
|
|
|
+output = nn.get(test_data)
|
|
|
+print ("Test: 9")
|
|
|
+print (output)
|
|
|
+index = np.argmax(output)
|
|
|
+predict = np.argmax(output)+1
|
|
|
+confidence = round(output[0][index][0] * 100, 2)
|
|
|
+print (f'Predict: {predict}; Confidence: {confidence}%\r\n')
|
|
|
+
|
|
|
+
|
|
|
+test_data = [0.8, 1.0, 0.98, 0.0, 0.89, 0.89, 0.99]
|
|
|
+output = nn.get(test_data)
|
|
|
+print ("Test: 0")
|
|
|
+print (output)
|
|
|
+index = np.argmax(output)
|
|
|
+predict = np.argmax(output)+1
|
|
|
+confidence = round(output[0][index][0] * 100, 2)
|
|
|
+print (f'Predict: {predict}; Confidence: {confidence}%\r\n')
|
|
|
+
|
|
|
+
|
|
|
+test_data = [0.1, 0.12, 0.15, 0.05, 0.09, 0.098, 0.11]
|
|
|
+output = nn.get(test_data)
|
|
|
+print ("Test: Nothing")
|
|
|
+print (output)
|
|
|
+index = np.argmax(output)
|
|
|
+predict = np.argmax(output)+1
|
|
|
+confidence = round(output[0][index][0] * 100, 2)
|
|
|
+print (f'Predict: {predict}; Confidence: {confidence}%\r\n')
|
|
|
+
|
|
|
+
|
|
|
+test_data = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
|
|
+output = nn.get(test_data)
|
|
|
+print ("Test: Absolutely nothing :)")
|
|
|
+print (output)
|
|
|
+index = np.argmax(output)
|
|
|
+predict = np.argmax(output)+1
|
|
|
+confidence = round(output[0][index][0] * 100, 2)
|
|
|
+print (f'Predict: {predict}; Confidence: {confidence}%\r\n')
|