Bladeren bron

computer vision examples

Andrey Koryagin 6 maanden geleden
bovenliggende
commit
f3d056234b
4 gewijzigde bestanden met toevoegingen van 444 en 0 verwijderingen
  1. 54 0
      own_nn/ImageElement.py
  2. 377 0
      own_nn/coco_to_yolo.py
  3. 7 0
      own_nn/fivefingers-seg.py
  4. 6 0
      own_nn/train.py

+ 54 - 0
own_nn/ImageElement.py

@@ -0,0 +1,54 @@
+
+class ImageElement:
+    def __init__(
+        self,
+        path_image_initial: str,
+        path_label_initial: str,
+        img_width: int,
+        img_height: int,
+        image_id: int,
+        type_data: str,
+        path_label_final: str,
+        path_image_final: str,
+        classes_names: list,
+        classes_ids: list,
+        point_list: list,
+    ) -> None:
+        self.path_image_initial = path_image_initial  # path to the original image
+        self.path_label_initial = path_label_initial  # path to the original COCO json with its data
+
+        self.img_width = img_width
+        self.img_height = img_height
+
+        self.image_id = image_id  # image id according to COCO
+
+        self.type_data = type_data  # type of data (train, test, valid)
+
+        self.path_label_final = path_label_final  # path to the final YOLO label
+        self.path_image_final = path_image_final  # path to the final YOLO image format
+
+        # List of class names ex: [car, car, car, dog] - 3 objects of class car and 1 object of class dog:
+        self.classes_names = classes_names
+        # List of class numbers from 0 to N-1 ex: [0, 0, 0, 1] - 3 objects of class 0 and 1 object of class 1:
+        self.classes_ids = classes_ids  
+
+        # List of lists of points ex [[x, y, x, y, x, y], [x, y, x, y, x, y]] length equals the number of objects in the photo:
+        self.point_list = point_list
+        
+    def __str__(self):
+        # Converting each segmentation to the number of points
+        segmentations_lengths = [len(segmentation) // 2 for segmentation in self.point_list]
+        return (
+            f"ImageElement info:\n"
+            f" - path_image_initial: {self.path_image_initial}\n"
+            f" - path_label_initial: {self.path_label_initial}\n"
+            f" - img_width: {self.img_width}\n"
+            f" - img_height: {self.img_height}\n"
+            f" - image_id: {self.image_id}\n"
+            f" - type_data: {self.type_data}\n"
+            f" - path_label_final: {self.path_label_final}\n"
+            f" - path_image_final: {self.path_image_final}\n"
+            f" - classes_names: {self.classes_names}\n"
+            f" - classes_ids: {self.classes_ids}\n"
+            f" - points_amount: {segmentations_lengths}\n"
+        )

+ 377 - 0
own_nn/coco_to_yolo.py

@@ -0,0 +1,377 @@
+import os
+import json
+import shutil
+import random
+import click
+
+import yaml
+from shapely.geometry import Polygon
+from shapely.affinity import rotate
+
+from ImageElement import ImageElement
+
+
+def preprocessing_for_yolov8_obb_model(coco_json: str, lang_ru=False):
+    """
+    Checks for Oriented Bounding Boxes in COCO format. If found,
+    replaces the bbox and rotation of each object with the coordinates of four points in the segmentation section.
+    
+    Args:
+    - coco_json (str): Path to the file containing COCO data in JSON format.
+    - lang_ru (bool): If True, all comments will be in Russian (otherwise in English).
+    """
+
+    # Loading COCO data from file 
+    with open(coco_json, 'r') as f:
+        coco_data = json.load(f)
+
+    # Getting the list of annotations from COCO
+    annotations = coco_data['annotations']
+    changes = 0
+
+    # Iterating through the annotations
+    for annotation in annotations:
+        segmentation = annotation['segmentation']
+
+        # If segmentation is empty and bbox contains information, perform the operation
+        if not segmentation and annotation['bbox']:
+            bbox = annotation['bbox']
+            rotation_angle = annotation['attributes']['rotation']  # Assumes rotation information is available
+
+            # Converting bbox to x, y, width, height format
+            x, y, width, height = bbox
+
+            # Creating a rotated rectangle
+            rectangle = Polygon([(x, y), (x + width, y), (x + width, y + height), (x, y + height)])
+
+            # Rotating the rectangle
+            rotated_rectangle = rotate(rectangle, rotation_angle, origin='center')
+
+            # Getting the coordinates of the vertices of the rotated rectangle
+            new_segmentation = list(rotated_rectangle.exterior.coords)
+
+            # Keeping only the vertex coordinates (first 4 elements)
+            new_segmentation = new_segmentation[:4]
+
+            # Converting the list of vertices into the desired format
+            flattened_segmentation = [coord for point in new_segmentation for coord in point]
+
+            # Updating the value in the annotation
+            annotation['segmentation'] = [flattened_segmentation]
+
+            changes += 1
+
+    if changes > 0:
+        if lang_ru:
+            print(f'Было обнаружено {changes} Oriented Bounding Boxes в файле {coco_json}')
+        else:
+            print(f'Found {changes} Oriented Bounding Boxes in the file {coco_json}')
+
+        # Saving the updated data to the file
+        with open(coco_json, 'w') as f:
+            json.dump(coco_data, f)
+
+
[email protected]()
[email protected](
+    "--coco_dataset",
+    default="COCO_dataset",
+    help="Folder with COCO 1.0 format dataset (can be exported from CVAT). Default is COCO_dataset",
+    type=str,
+)
[email protected](
+    "--yolo_dataset",
+    default="YOLO_dataset",
+    help="Folder with the resulting YOLOv8 format dataset. Default is YOLO_dataset",
+    type=str,
+)
[email protected](
+    "--print_info",
+    default=False,
+    help="Enable/Disable processing log output mode. Default is disabled",
+    type=bool,
+)
[email protected](
+    "--autosplit",
+    help="Enable/Disable automatic split into train/val. Default is disabled (uses the CVAT annotations)",
+    default=False,
+    type=bool,
+)
[email protected](
+    "--percent_val",
+    help="Percentage of data for validation when using autosplit=True. Default is 25%",
+    default=25,
+    type=float,
+)
[email protected](
+    "--lang_ru",
+    help="Sets the Russian language of comments, if selected value is True. English by default",
+    default=False,
+    type=bool,
+)
+def main(**kwargs):
+    # ------------------ ARG parse ------------------
+    coco_dataset_path = kwargs["coco_dataset"]
+    yolo_dataset_path = kwargs["yolo_dataset"]
+    print_info = kwargs["print_info"]
+    autosplit = kwargs["autosplit"]
+    percent_val = kwargs["percent_val"]
+    lang_ru = kwargs["lang_ru"]
+
+    coco_annotations_path = os.path.join(coco_dataset_path, 'annotations')
+    coco_images_path = os.path.join(coco_dataset_path, 'images')
+
+    # Check the presence of the dataset
+    if not os.path.exists(coco_dataset_path):
+        if lang_ru:
+            raise FileNotFoundError(f"Папка с COCO датасетом '{coco_images_path}' не найдена.")
+        else:
+            raise FileNotFoundError(f"The COCO dataset folder '{coco_images_path}' was not found.")
+
+    # Check the presence of the images folder
+    if not os.path.exists(coco_images_path):
+        if lang_ru:
+            raise FileNotFoundError(f"Папка с изображениями '{coco_images_path}' не найдена. "
+                            f"Убедитесь, что вы загрузили разметку COCO так, чтобы имелась папка со всеми изображениями.")
+        else:
+            raise FileNotFoundError(f"The images folder '{coco_images_path}' was not found. "
+                            f"Make sure you have uploaded COCO annotations so that there is a folder with all images.")
+
+    # Check if the annotations folder exists
+    if not os.path.exists(coco_annotations_path):
+        if lang_ru:
+            raise FileNotFoundError(f"The folder with json files '{coco_annotations_path}' was not found.")
+        else:
+            raise FileNotFoundError(f"Папка с json файлами '{coco_annotations_path}' не найдена.")
+
+    list_of_image_elements = []
+    list_of_images_path = []
+
+    # Get a list of all files in the annotations folder
+    annotation_files = os.listdir(coco_annotations_path)
+
+    shutil.rmtree(yolo_dataset_path, ignore_errors=True) # Clear old data in the folder
+
+    if autosplit:
+        for folder_path in ['images', 'labels']:
+            for type in ['validation', 'train']:
+                path_create=os.path.join(yolo_dataset_path, type, folder_path)
+                os.makedirs(path_create, exist_ok=True)
+
+    ### Check for duplicates in different subsets ###
+    # Create a dictionary to store files and their corresponding JSON files
+    file_json_mapping = {}
+
+    # Iterate through annotation files
+    for annotation_file in annotation_files:
+        json_file_path = os.path.join(coco_annotations_path, annotation_file)
+        with open(json_file_path, 'r') as f:
+            coco_data = json.load(f)
+
+        # Get the list of images from JSON
+        images = coco_data['images']
+
+        # Iterate through images and update the file_json_mapping dictionary
+        for image in images:
+            file_name = image['file_name']
+            if file_name not in file_json_mapping:
+                file_json_mapping[file_name] = [annotation_file]
+            else:
+                file_json_mapping[file_name].append(annotation_file)
+
+    # Check if any file has more than one occurrence
+    for file_name, json_files in file_json_mapping.items():
+        if len(json_files) > 1:
+            if lang_ru:
+                print(f"Файл {file_name} встречается в следующих JSON файлах: {json_files}")
+                print(f'В каком-либо из JSON файлов удалите в разделе "images" словарь ' \
+                      f'с описанием этой фотографии, иначе будет ошибка при выполнении кода')
+                raise SystemExit
+            else:
+                print(f"The file {file_name} appears in the following JSON files: {json_files}")
+                print(f"Remove the dictionary describing this photo from the 'images' section in " \
+                      f"one of the JSON files, otherwise there will be an error when running the code.")
+                raise SystemExit
+
+    ### Run the main code: ###
+           
+    # Iterate through annotation files
+    for annotation_file in annotation_files:
+        # Parse the image file name from the annotation file
+        type_data = os.path.splitext(annotation_file)[0].split('_')[-1]
+        json_file_path = os.path.join(coco_annotations_path, annotation_file) # path to the json file
+
+        # Preprocessing for YOLOv8-obb
+        preprocessing_for_yolov8_obb_model(coco_json=json_file_path, lang_ru=lang_ru)
+
+        # Create folder if it doesn't exist
+        if not autosplit:
+            for folder_path in ['images', 'labels']:
+                path_create=os.path.join(yolo_dataset_path, type_data.lower(), folder_path)
+                os.makedirs(path_create, exist_ok=True)
+
+        # Open coco json
+        with open(json_file_path, 'r') as f:
+            coco_data = json.load(f)
+
+        # Get the list of images from JSON
+        images = coco_data['images']
+
+        # Create a dictionary with class information
+        coco_categories = coco_data['categories']
+        categories_dict = {category['id']-1: category['name'] for category in coco_categories}
+
+        # Print information
+        if print_info:
+            if lang_ru:
+                print(f'Осуществляется обработка {annotation_file}')
+                print(f'Имеющиеся классы: {categories_dict}')
+            else:
+                print(f'Processing {annotation_file}')
+                print(f'Available classes: {categories_dict}')
+            print('-----------------\n')
+
+        #### Additional check for the presence of all image files
+        # Get the list of image files with annotations in COCO
+        annotated_images = set([entry['file_name'] for entry in coco_data['images']])
+
+        # Get the list of files in the images folder
+        all_images = set(os.listdir(coco_images_path))
+
+        # Check that all images from COCO are annotated
+        if not annotated_images.issubset(all_images):
+            missing_images = annotated_images - all_images
+            if lang_ru:
+                raise FileNotFoundError(f"Некоторые изображения, для которых есть разметка в {json_file_path}, отсутствуют в папке с изображениями. "
+                                    f"Отсутствующие изображения: {missing_images}")
+            else:
+                raise FileNotFoundError(f"Some images annotated in {json_file_path} are missing from the images folder. "
+                                    f"Missing images: {missing_images}")
+                
+
+        # Iterate through images and read annotations
+        for image in images:
+            image_id = image['id']
+            file_name = image['file_name']
+            path_image_initial = os.path.join(coco_images_path, file_name)
+            
+            # Find corresponding annotations for the image
+            list_of_lists_annotations = [ann['segmentation'] for ann in coco_data['annotations'] if ann['image_id'] == image_id]
+            try:
+                annotations = [sublist[0] for sublist in list_of_lists_annotations]
+            except:
+                if lang_ru:
+                    print(f"В разметке фотографии {file_name} имеются объекты, не являющиеся полигонами. "\
+                        f"\nНеобходимо, чтобы все объекты для обучения YOLOv8-seg были размечены как полигоны! "\
+                        f"\nИсправьте это и заново выгрузите датасет.")
+                else:
+                    print(f"The annotations for the image {file_name} contain objects that are not polygons. "\
+                      f"\nAll objects for training YOLOv8-seg must be annotated as polygons! "\
+                      f"\nPlease correct this and reload the dataset.")
+                raise SystemExit
+            
+            classes = [ann['category_id']-1 for ann in coco_data['annotations'] if ann['image_id'] == image_id]
+            
+            if autosplit:
+                # Generate a random number from 1 to 100
+                random_number = random.randint(1, 100)
+                # If the random number <= percent_val, then type_dataset = "validation", otherwise "train"
+                type_dataset = "validation" if random_number <= percent_val else "train"
+            else:
+                type_dataset = type_data.lower()
+
+            # Create an instance of the ImageElement class:
+            element = ImageElement(
+                    path_image_initial=path_image_initial,
+                    path_label_initial=json_file_path,
+                    img_width=image['width'],
+                    img_height=image['height'],
+                    image_id=image_id,
+                    type_data=type_dataset,
+                    path_label_final=os.path.join(yolo_dataset_path, type_dataset,
+                                                'labels', os.path.splitext(file_name)[0]+'.txt'),
+                    path_image_final=os.path.join(yolo_dataset_path, type_dataset,
+                                                'images', file_name),
+                    classes_names=[categories_dict[cl] for cl in classes],
+                    classes_ids=classes,
+                    point_list=annotations,
+                    )
+            list_of_image_elements.append(element)
+            list_of_images_path.append(file_name)
+
+            # Print information about ImageElement if necessary
+            if print_info:
+                print(element)
+
+    ### Check for the presence of all images in the images folder 
+    # Get the list of files in the folder
+    files_in_folder = set(os.listdir(coco_images_path))
+
+    # Check that all files from the list are present in the folder
+    missing_files = set(list_of_images_path) - files_in_folder
+    extra_files = files_in_folder - set(list_of_images_path)
+
+    # Display notification
+    if missing_files:
+        if lang_ru:
+            print(f"Отсутствующие файлы в папке {coco_images_path}: {missing_files}")
+        else:
+            print(f"Missing files in the folder {coco_images_path}: {missing_files}")
+
+    if extra_files:
+        if lang_ru:
+            print(f"Лишние файлы в папке {coco_images_path}: {extra_files}")
+        else:
+            print(f"Extra files in the folder {coco_images_path}: {extra_files}")
+
+    # Creating data.yaml configuration:
+    # Create a data structure for writing to data.yaml
+    data_dict = {
+        'names': list(categories_dict.values()),
+        'nc': len(categories_dict),
+        'test': 'test/images',
+        'train': 'train/images',
+        'val': 'validation/images'
+    }
+    if autosplit:
+        data_dict['test'] = 'validation/images'
+
+    # Path to the data.yaml file
+    data_yaml_path = f"{yolo_dataset_path}/data.yaml"  
+
+    # Write data to the data.yaml file
+    with open(data_yaml_path, 'w') as file:
+        yaml.dump(data_dict, file, default_flow_style=False)
+
+    # Creating labels and copying images to folders:
+    for element in list_of_image_elements:
+        # Copying the image
+        shutil.copy(element.path_image_initial, element.path_image_final)
+
+        # Creating a YOLO annotation file
+        with open(element.path_label_final, 'w') as yolo_label_file:
+            for i in range(len(element.classes_ids)):
+                class_id = element.classes_ids[i]
+                class_name = element.classes_names[i]
+                points = element.point_list[i]
+                output_string = f'{class_id}'
+
+                for i, point in enumerate(points):
+
+                    if i % 2 == 0:
+                        result = round(point / element.img_width, 9)
+                    else:
+                        result = round(point / element.img_height, 9)
+                    output_string += f' {result:.6f}'
+                # Writing data to the file
+                yolo_label_file.write(output_string+'\n')
+                    
+    if lang_ru:
+        print(f"Итоговая разметка в формате YOLOv8 расположена в папке - {yolo_dataset_path}.")
+    else:
+        print(f"The final YOLOv8 format annotations are located in the folder - {yolo_dataset_path}.")                  
+
+
+
+if __name__ == "__main__":
+    main()

+ 7 - 0
own_nn/fivefingers-seg.py

@@ -0,0 +1,7 @@
+from ultralytics import YOLO
+
+# Load custom model
+model = YOLO('fivefingers-seg-100.pt')
+results = model.predict(source=0, iou=0.65, conf=0.98, show=True, verbose=False)
+
+

+ 6 - 0
own_nn/train.py

@@ -0,0 +1,6 @@
+from ultralytics import YOLO
+
+# Load an official or custom model
+model = YOLO('yolov8s-seg.pt')  # Load an official Detect model
+
+results = model.train(data='data.yaml', epochs=100, imgsz=640, batch=16)